* Approved by Standard Methods Committee, 1993.


4500-NO2 B. Colorimetric Method

1. General Discussion



    a. Principle: Nitrite (NO2) is determined through formation of a reddish purple azo dye produced at pH 2.0 to 2.5 by coupling diazotized sulfanilamide with N-(1-naphthyl)-ethylenediamine dihydrochloride (NED dihydrochloride). The applicable range of the method for spectrophotometric measurements is 10 to 1000 g NO2 -N/L. Photometric measurements can be made in the range 5 to 50 g N/L if a 5-cm light path and a green color filter are used. The color system obeys Beer's law up to 180 g N/L with a 1-cm light path at 543 nm. Higher NO2 concentrations can be determined by diluting a sample.

    b. Interferences: Chemical incompatibility makes it unlikely that NO2, free chlorine, and nitrogen trichloride (NCI3) will coexist. NCI3 imparts a false red color when color reagent is added. The following ions interfere because of precipitation under test conditions and should be absent: Sb3+, Au3+, Bi3+, Fe3+, Pb2+, Hg2+, Ag+, chloroplatinate (PtCl62), and metavanadate (VO32). Cupric ion may cause low results by catalyzing decomposition of the diazonium salt. Colored ions that alter the color system also should be absent. Remove suspended solids by filtration.

    c. Storage of sample: Never use acid preservation for samples to be analyzed for NO2. Make the determination promptly on fresh samples to prevent bacterial conversion of NO2 to NO3 or NH3. For short-term preservation for 1 to 2 d, freeze at 20oC or store at 4oC.


2. Apparatus


    Colorimetric equipment: One of the following is required:

    a. Spectrophotometer, for use at 543 nm, providing a light path of 1 cm or longer.

    b. Filter photometer, providing a light path of 1 cm or longer and equipped with a green filter having maximum transmittance near 540 nm.


3. Reagents


    a. Nitrate-free water: If it is not known that the distilled or demineralized water is free from NO2, use either of the following procedures to prepare nitrite-free water:

    1) Add to 1 L distilled water one small crystal each of KMnO4 and either Ba(OH)2 or Ca(OH)2. Redistill in an all-borosilicate-glass apparatus and discard the initial 50 mL of distillate. Collect the distillate fraction that is free of permanganate; a red color with DPD reagent (Section 4500CI.F.2b) indicates the presence of permanganate.

    2) Add 1 mL conc H2SO4 and 0.2 mL MnSO4 solution (36.4 g MnSO4H2O/100 mL distilled water) to each 1 L distilled water, and make pink with 1 to 3 mL KMnO4 solution (400 mg KMnO4/L distilled water). Redistill as described in the preceding paragraph.

Use nitrite-free water in making all reagents and dilutions.

    b. Color reagent: To 800 mL water add 100 mL 85% phosphoric acid and 10 g sulfanilamide. After disssolving sulfanilamide completely, add 1 g N-(1-naphthyl)-ethylenediamine dihydrochloride. Mix to dissolve, then dilute to 1 L with water. Solution is stable for about a month when stored in a dark bottle in refrigerator.

    c. Sodium oxalate, 0.025M (0.05N): Dissolve 3.350 g Na2C2O4, primary standard grade, in water and dilute to 1000 mL.

    d. Ferrous ammonium sulfate, 0.05M (0.05N): Dissolve 19.607 g Fe(NH4)2 (SO4)26H2O plus 20 mL conc H2SO4 in water and dilute to 1000 mL. Standardize as in Section 5220B.3d.

    e. Stock nitrite solution: Commercial reagent-grade NaNO2 assays at less than 99%. Because NO2 is oxidized readily in the presence of moisture, use a fresh bottle of reagent for preparing the stock solution and keep bottles tightly stoppered against the free access of air when not in use. To determine NaNO2 content, add a known excess of standard 0.01M (0.05N) KMnO4 solution (See h below), discharge permanganate color with a known quantity of standard reductant such as 0.025M Na2C2O4 or 0.05M Fe(NH4)2(SO4)2, and back-titrate with standard permanganate solution.

    1) Preparation of stock solutionDissolve 1.232 g NaNO2 in water and dilute to 1000 mL; 1.00 mL = 250 g N. Preserve with 1 mL CHCl3.

    2) Standardization of stock nitrite solutionPipet, in order, 50.00 mL standard 0.01M (0.05N) KMnO4, 5 mL conc H2SO4, and 50.00 mL stock NO2 solution into a glass-stoppered flask or bottle. Submerge pipet tip well below surface of permanganate-acid solution while adding stock NO2 solution. Shake gently and warm to 70 to 80C on a hot plate. Discharge permanganate color by adding sufficient 10-mL portions of standard 0.025M Na2C2O4. Titrate excess Na2C2O4 with 0.01M (0.05N) KMnO4 to the faint pink end point. Carry a water blank through the entire procedure and make the necessary corrections in the final calculation as shown in the equation below.

    If standard 0.05M ferrous ammonium sulfate solution is substituted for Na2C2O4, omit heating and extend reaction period between KMnO4 and Fe2+ to 5 min before making final KMnO4 titration.

    Calculate NO2-N content of stock solution by the following equation:


                                            [(B X C) - (D X E)] X 7

                                A =                                         





    A = mg NO2-N/mL in stock NaNO2 solution,

    B = total mL standard KMnO4 used,

    C = normality of standard KMnO4,

    D = total mL standard reductant added,

    E = normality of standard reductant, and

    F = mL stock NaNO2 solution taken for titration.


    Each 1.00 mL 0.01M (0.05N) KMnO4 consumed by the NaNO2 solution corresponds to 1750 g NO2-N.

    f. Intermediate nitrite solution: Calculate the volume, G, of stock NO2 solution required for the intermediate NO2 solution from G = 12.5/A. Dilute the volume G (approximately 50 mL) to 250 mL with water; 1.00 mL = 50.0 g N. Prepare daily.

    g. Standard nitrite solution: Dilute 10.00 mL intermediate NO2 solution to 1000 mL with water; 1.00 mL = 0.500 g N. Prepare daily.

    h. Standard potassium permanganate titrant, 0.01M (0.05N): Dissolve 1.6 g KMnO4 in 1 L distilled water. Keep in a brown glass-stoppered bottle and age for at least 1 week. Carefully decant or pipet supernate without stirring up any sediment. Standardize this solution frequently by the following procedure:

    Weigh to the nearest 0.1 mg several 100- to 200-mg samples of anhydrous Na2C2O4 into 400-mL beakers. To each beaker, in turn, add 100 mL distilled water and stir to dissolve. Add 10 mL 1 + 1 H2SO4 and heat rapidly to 90 to 95oC. Titrate rapidly with permanganate solution to be standardized, while stirring, to a slight pink end-point color that persists for at least 1 min. Do not let temperature fall below 85oC. If necessary, warm beaker contents during titration; 100 mg will consume about 6 mL solution. Run a blank on distilled water and H2SO4.   


                                                               g Na2C2O4

                    Normality of KMnO4                                   

                                                          (A - B) X 0.335 05




    A = mL titrant for sample and

    B = mL titrant for blank.


Average the results of several titrations.


4. Procedure

    a. Removal of suspended solids: If sample contains suspended solids, filter through a 0.45-m-pore-diam membrane filter.

    b. Color development: If sample pH is not between 5 and 9, adjust to that range with 1N HCl or NH4OH as required. To 50.0 mL sample, or to a portion diluted to 50.0 mL, add 2 mL color reagent and mix.

    c. Photometric measurement: Between 10 min and 2 h after adding color reagent to samples and standards, measure absorbance at 543 nm. As a guide use the following light paths for the indicated NO2-N concentrations:


  Light Path Length NO2-N
  cm g/L
    1   2 - 25
    5 2 - 6
  10 <2







5. Calculation


    Prepare a standard curve by plotting absorbance of standards against NO2-N concentration. Compute sample concentration directly from curve.


6. Precision and Bias


    In a single laboratory using wastewater samples at concentrations of 0.04, 0.24, 0.55, and 1.04 mg NO3 + NO2-N/L, the standard deviations were 0.005, 0.004, 0.005, and 0.01, respectively. In a single laboratory using wastewater samples at concentrations of 0.24, 0.55, and 1.05 mg NO3 + NO2-N/L, the recoveries were 100%, 102%, and 100%, respectively.1






7. Reference

  1. U.S. ENVIRONMENTAL PROTECTION AGENCY. 1979. Methods for Chemical Analysis of Water and Wastes. Method 353.3. U.S. Environmental Protection Agency, Washington, D.C.

8. Bibliography


BOLTZ, D.F., ed. 1958. Colorimetric Determination of Nonmetals. Interscience Publishers, New York, N.Y.


NYDAHL, F. 1976. On the optimum conditions for the reduction of nitrate by cadmium. Talanta 23:349.



Standard Methods for the Examination of Water and Wastewater. 20th Ed. American Public Health Association, American Water Works Association, Water Environment Federation.